A QSAR study of some cyclobutenediones as CCR1 antagonists by artificial neural networks based on principal component analysis
نویسندگان
چکیده
BACKGROUND AND PURPOSE OF THE STUDY A quantitative structure activity relationship (QSAR) model based on artificial neural networks (ANN) was developed to study the activities of 29 derivatives of 3-amino-4-(2-(2-(4-benzylpiperazin-1-yl)-2-oxoethoxy) phenylamino) cyclobutenedione as C-C chemokine receptor type 1(CCR1) inhibitors. METHODS A feed-forward ANN with error back-propagation learning algorithm was used for model building which was achieved by optimizing initial learning rate, learning momentum, epoch and the number of hidden neurons. RESULTS Good results were obtained with a Root Mean Square Error (RMSE) and correlation coefficients (R(2)) of 0.189 and 0.906 for the training and 0.103 and 0.932 prediction sets, respectively. CONCLUSION The results reflect a nonlinear relationship between the Principal components obtained from calculated molecular descriptors and the inhibitory activities of the investigated molecules.
منابع مشابه
Comparison of Different 2D and 3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists
Histamine H3 receptor subtype has been the target of several recent drug development programs. Quantitative structure-activity relationship (QSAR) methods are used to predict the pharmaceutically relevant properties of drug candidates whenever it is applicable. The aim of this study was to compare the predictive powers of three different QSAR techniques, namely, multiple linear regression ...
متن کاملCombined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملCombined Unfolded Principal Component Analysis and Artificial Neural Network for Determination of Ibuprofen in Human Serum by Three-Dimensional Excitation–Emission Matrix Fluorescence Spectroscopy
This study describes a simple and rapid approach of monitoring ibuprofen (IBP). Unfolded principal component analysis-artificial neural network (UPCA-ANN) and excitation-emission spectra resulted from spectrofluorimetry method were combined to develop new model in the determination of IBF in human serum samples. Fluorescence landscapes with excitation wavelengths from 235 to 265 nm and emission...
متن کاملQuantitative Structure-Activity Relationship Study on Thiosemicarbazone Derivatives as Antitubercular agents Using Artificial Neural Network and Multiple Linear Regression
Background and purpose: Nonlinear analysis methods for quantitative structure–activity relationship (QSAR) studies better describe molecular behaviors, than linear analysis. Artificial neural networks are mathematical models and algorithms which imitate the information process and learning of human brain. Some S-alkyl derivatives of thiosemicarbazone are shown to be beneficial in prevention and...
متن کاملComparison of Different 2D and 3D-QSAR Methods on Activity Prediction of Histamine H3 Receptor Antagonists
Histamine H3 receptor subtype has been the target of several recent drug development programs. Quantitative structure-activity relationship (QSAR) methods are used to predict the pharmaceutically relevant properties of drug candidates whenever it is applicable. The aim of this study was to compare the predictive powers of three different QSAR techniques, namely, multiple linear regression ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 19 شماره
صفحات -
تاریخ انتشار 2011